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Modularity, reproductive thresholds and
plant population dynamics

Rees & Crawley (1989) suggest that, because of
their modular construction, plants are less likely
than unitary animals to display a size threshold for
reproduction, and that they consequently have
populations that are less prone to density-driven
cycles or chaos. Their argument is based upon
population models which show that the existence
of a threshold rate of resource use below which
individuals’ fitness falls to zero is destabilizing
(Beddington et al, 1976; Lomnicki, 1988;
Readshaw & Culff, 1980).

To test their hypothesis Rees & Crawley exam-
ined the value of the y-intercept on curves of
fitness (usually using fecundity as a surrogate) vs
resource use (usually using size as a surrogate) for
35 animals and 15 plants. The exponents of log-log
regressions of fecundity on plant weight were used
for a further 11 plant species on the assumption
that regressions with an exponent significantly
greater than unity had a reproductive threshold.
Apparently none of the 11 species met this criter-
ion. The animals in this sample are unitary and the
plants modular but the two groups also differ in
many other ways that could influence the com-
parison, perhaps the most important of all being
that the animals are heterotrophic and the plants
autotrophic (see below). Whatever the result, the
comparison is not a conclusive test of the influence
of modularity per se on population dynamics.

Six of the 26 plant species in Rees & Crawley’s
sample had negative intercepts compared to 30 of
the 35 animals. Rees & Crawley interpret this as
unequivocal evidence that animals exhibit repro-
ductive thresholds and that plants do not.
However there are a number of grounds on which
this conclusion can be questioned. Firstly, of the
six plants with negative intercepts, three were
statistically significant but of the 30 animals only
seven were. Second, and more importantly, a size
threshold for reproduction may exist without
there being a negative intercept. Rees & Crawley
make this point themselves, though they appear
not to have appreciated that it invalidates their
test. Virtually every semelparous perennial plant
that has been studied has a size threshold for
reproduction, including four (Cynoglossum offi-

cinale, Cirsium vulgare, Dipsacus sylvestris,
Oenothera glazioviana) that appear in Rees &
Crawley’s sample as cases without a significant
negative intercept. Since these plants have a
minimum size for reproduction the y-intercept of
their fitness/size regressions is a meaningless
extrapolation because the actual curve of fitness vs
size is non-linear. Non-linear relationships
between size and reproductive efforts in plants
were found to be quite common in a review by
Samson & Werk (1986), all of whose data Rees &
Crawley ignored.

Most perennial plants (and probably most
animals) must reach a minimum size before they
reproduce. A threshold in itself is not a sufficient
condition for population instability. Instability
results when the recruitment curve has a hump,
and the diagonal line Ny = Ny, intersects the
curve to the right of its maximum (e.g. Fig. 1a)
(Vandermeer, 1981). Whether a threshold will be
destabilizing or not depends upon how it affects
the division of resources between reproductive
and non-reproductive members of the population
at high density (Lomnicki, 1988). If non-reproduc-
tives continue to consume resources when these
are limiting, the recruitment curve may become
humped and populations reaching the appropriate
region of the curve will exhibit limit cycles or
chaos. An actual case of this mechanism driving
cycles in a plant population has been clearly
documented for. Erophila verna by Symonides,
Silvertown & Andreasen (1986). At high density
the proportion of the E. verna population
flowering fell. Non-reproductives did not actually
die, but continued to crowd reproductives, so that
the latter were unable to consume extra resources
(space) and produce extra seeds to compensate for
the ‘lost’ seed production of the former, as would
have occurred if non-reproductives had died (see
below).

In general, the recruitment curve for an annual
with no seed dormancy and 100% seed germin-
ation can be described by the difference equation
(Watkinson, 1980):

AN,
(1 + aN)?

Where \ is the maximum possible value of the
finite rate of increase, and a and b are constants.

Niy1 = Equation 1
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(a) Recruitment curve generating 2-point cycles
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(b) Rhinanthus serotinus
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Fig. 1. Recruitment curves for (a) an ‘ideal’ population with oscillatory dynamics (equation 1, \ = 100, a = 0-005, b = 2).
The trajectory of the population is shown by arrows: (b) Rhinanthus serotinus (equation 1); (c) Salicornia euroapaea
with no self-thinning (equation 1); (d) Salicornia euroapaea with self-thinning (equation 2). Parameters for the
calculation of (b)-(d) from Watkinson & Davy (1985). The dashed line in each indicates Ny = N, ,.

Rees & Crawley argue that the law of constant final
yield should normally prevent the phenomenon
seen in E. verna from occurring. This is not strictly
correct, because the law applies to biomass, not to
seed production. Whereas yield expressed as bio-
mass is generally asymptotic with rising density, it
is frequently parabolic for plant parts such as
reproductive structures (Harper, 1977). When the
law of constant yield does apply to seed yield, b =
1in equation 1. For values of b > 1 the recruitment
curve is humped.

In a review of the population dynamics of
annuals Watkinson & Davy (1985) found b > 1 in
two of seven populations. In one of these,
Rhinanthus serotinus (ter Borg, 1979), the recruit-
ment curve is humped, but the diagonal Ny = N4

intersects the curve to the left of the maximum
(Fig. 1b). In the other species, a low marsh popu-
lation of Salicornia euroapaea (Jefferies, Davy &
Rudmik, 1981), the shape of the recruitment curve
and the dynamics of the population depend upon
the presence of density-dependent mortality (self-
thinning). When mortality is ignored (equation 1)
the population should cycle (Fig. 1c). A mortality
term mAN; can be included in equation 1 to
account for self-thinning (Watkinson, 1980):

AN,
(1 + aN)? + m\N,

Niyq = Equation 2
Using an estimated value of m = 8 X 107% in
equation 2 (Watkinson & Davey, 1985) reduces the
hump in the recruitment curve, though it does not
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remove it, and causes the diagonal to intersect the
curve at a point where population stability is
expected (Fig. 1d).

A negative intercept on the resource use/fitness
graph is an inadequate test of the existence of a
reproductive threshold. Furthermore, the exist-
ence of a reproductive threshold is not a sufficient
condition to generate a hump in the recruitment
curve. However, the question that originally moti-
vated Rees & Crawley remains an interesting one.
Are there fundamental differences between
animals and plants that influence their population
dynamics? The crucial issue is the assymetry of
competition between large and small individuals
in crowded populations, because this influences
the shape of the recruitment curve (Watkinson,
1980). Plants and animals should indeed exhibit
different dynamics, because plant competition for
resources is inherently assymetric and competi-
tion among animals is not, unless they are territo-
rial. This prediction is not based upon a
distinction between modular and unitary organ-
isms, but upon a difference between autotrophes
and heterotrophes.

In strongly assymetric competition, equivalent
to Nicholson’s (1954) contest competition,
winners take all. Large individuals suppress small
ones and are unaffected by them. In symmetric
competition, equivalent to Nicholson’s scramble
competition, individuals all receive some share of
the limiting resource. Large individuals are affec-
ted by small ones. Symmetric competition,
combined with the existence of a reproductive
threshold, is destabilizing (Readshaw & Cuff,
1980).

Plants in crowded monocultures typically exhi-
bit a highly skewed size frequency distribution
with many small and few large individuals
(Benjamin & Hardwick, 1986). Such distributions
are generated by competition for light which is
inherently assymetric because taller and larger
plants interfere with smaller ones but not vice
versa. By contrast, competition for below-ground
resources tends to be symmetric and does not
generate size inequality (Weiner, 1986).

I conclude then, that Rees & Crawley may be
partially correct, and that plants are less likely to
exhibit complex population dynamics than
animals, but that this is because plants are autotro-
phic and compete for light, not because they are
modular. There is no good evidence that modula-
rity affects the existence of a size threshold for
reproduction and Rees & Crawley’s test does not
address this question directly. Neither, I submit, is
there any good evidence yet as to whether Rees &

Crawley or I am correct that fewer plants than
animals exhibit population cycles. Ideally, the
detection of cyclic behaviour requires observation
over many generations, backed-up by the con-
struction of a recruitment curve which shows the
required parabolic relationship with density
(Symonides, 1983; Symonides et al., 1986).

Because perennial plants have long generation
times and habitats are often successional or dis-
turbed, it is very unlikely that cycles will be
observed in perennial populations, even where the
conditions necessary to generate them exist. It is
not surprising then, that all three recognized
examples of plant population cycles are annuals
(E. verna, Symonides et al., 1986; S. patula,
Wilkon-Michalska, 1976; A. theophrasti, Thrall,
Pacala & Silander, 1989). In the last of these
species Thrall et al. (1989) have inferred cyclic
behaviour from a recruitment curve, but oscil-
lations in the field were damped by seed
dormancy.

For cycling to be reliably detected in the field,
studies should last at least 5 years, but very few
studies are as long as this. A comparison of
recruitment curves between representative
samples of univoltine insects and annual plants
would be the best way to test the hypothesis that
animal and plant populations have the potential to
exhibit different dynamics. Whether this potential
is realized can only be discovered by more long-
term field studies.
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Do plant populations cycle?

The general question about whether field popu-
lations of annual plants exhibit cyclic or chaotic
dynamics is both interesting and important.
Silvertown believes that there are three examples
of plant population cycles. We consider that none
of these studies satisfactorily demonstrates popu-
lation cycles, and we shall discuss briefly each of
the three examples to point out what we regard as
their main shortcomings.

Erophila verna

Symonides, Silvertown & Andreasen (1986)
present three pieces of evidence which they sug-
gest document regular two-point cycles.

1 In 20 quadrats observed over a 4-year period the
seedling density appears to follow a regular two-

point cycle. This small set of 20 cycling quadrats
was carefully chosen, and as Symonides (1984)
states: ‘the studies . .. have been restricted to an
analysis of natality only in the case of a very low
and a very high density’. Data from a much larger
study of 1600 quadrats studied for 7 years were not
presented (Symonides, 1983a,b). It is therefore
impossible to determine whether the data from the
20 selected quadrats are representative.

2 The number of transitions between low (1—4
seedlings), intermediate (5—-10 seedlings) and high
(11-56 seedlings) density quadrats is also given.
These data are from 200 quadrats studied over 7
years (i.e. about 12-5% of the available data). Of
these 200 quadrats, only those where Erophila was
present for all 7 years were used in the analysis, so
a further 30 quadrats that contained Erophila for 6
years or fewer were excluded from the analysis.
Thus, the analysis presented in Symonides et al.
(1986) is based on only 5% of the available data. It
is important to note that at least 50% of the
Erophila populations in their small sample of
quadrats did not undergo two-point cycles, but
went locally extinct. Thus, even in this small
fraction of the available data the evidence for
cycling is equivocal. We need a complete analysis
of all 1600 quadrats, showing the number of
quadrats that have persistent populations and, of
those that are persistent, the proportion that are
cyclic. This could then be compared with the
expected number of cyclic quadrats calculated on
the basis of an appropriate null hypothesis.

3 The third piece of evidence presented by Symo-
nides et al. (1986) is a humped relationship
between seedling density and seed production.
This is not a sufficient condition for two-point
cycles as demonstrated by Symonides et al. (1986)
in their original paper. In order for two-point
cycles to occur the fraction of seeds that survives to
become seedlings must lie precisely between 0-5
and 1%, irrespective of weather conditions in any
given year. Furthermore, their analysis assumes
that Erophila does not form a seed bank, but
Symonides herself (1984) has shown that, in the
soil environment, seeds ‘remain viable for 3—4
years’. The incorporation of a seed bank could
stabilize the Erophila population as in the case of
Abutilon (see below).

We suggest that the evidence of widespread
cycling in Erophila verna is less than compelling.

Salicornia patula

Silvertown quotes an unpublished PhD thesis
originally cited in Symonides (1988). We have not



