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Abstract. Two versions of a stage-structured model of
Cirsium vulgare population dynamics were developed.
Both incorporated density dependence at one stage in the
life cycle of the plant. In version 1 density dependence
was assumed to operate during germination whilst in
version 2 it was included at the seedling stage. Density-
dependent parameter values for the model were esti-
mated rom annual census data in a factorial grazing
experiment. Version 1 of the model produced significant
estimates of density dependence under field conditions.
The estimated values, when included in a simulation of
the dynamics, produced two-point limit cycles under
conditions of hard grazing. The limit cycles were most
pronounced at the early rosette stage. Comparison of the
effects of density dependence at the two different stages
in the life cycle revealed a strong difference in predicted
dynamics. This emphasizes the importance of determin-
ing where density dependence operates under field con-
ditions and the potential problems of arbitrarily assign-
ing it to particular life-history stages. Version 1 of the
model produced a good prediction of observed mean
plant density across the different grazing treatments
(r*=0.81, P<0.001)}.
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There have been numerous models of local plant popula-
tion dynamics incorporating density-independent fecun-
dity and survival values. These models have been de-
veloped using difference equations and/or matrix tech-
niques with stage, size or age-structure (Caswell 1989;
Silvertown et al. 1993; Watkinson 1987). Such models
allow determination of the finite rate of population in-
crease (A) cither by simulation or by evaluation of the
dominant eigenvalue of the transition matrix.
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Whilst these density-independent models have been
useful in identifying potential rates of population in-
crease at low density, it is clear that for many applica-
tions it is important to incorporate density dependence
(Watkinson 1987). There is now little doubt that density
dependence operates in most plant and animal popula-
tions, and that failure to detect it is largely due to the
inadequacies of data sets or techniques (Hassell et al.
1989; Holyoak and Lawton 1992: Turchin 1990; Woi-
wod and Hanski 1992). Density dependence has been
routinely applied in first order difference equation
models but less frequently within stage-structured
models (de Kroon et al. 1987; Klinkhamer and de Jong
1989).

For most populations the problem is therefore not one
of the existence of density dependence but of its mode of
action and strength under different field conditions.
Methods of determining the presence of density depen-
dence using regression techniques allow estimates to be
made of the value of the density-dependent parameter(s)
(Turchin 1990; Turchin and Taylor 1992). These param-
eter values can then be incorporated into population
dynamics models. The primary aim of this study is to
determine the values of the parameters of density depen-
dence from annual census data of the spear thistie, Cir-
sium vulgare, and include those values in a stage-struc-
tured model. Two versions of the model are developed;
one in which density dependence is assumed to operate

“during germination and one in which it operates on

seedling survival. The first version can be linked with an
earlier safe-site model for Cirsium vulgare (Silvertown
and Smith 1989). In this study appropriate regression
methods are developed to distinguish between the two
versions of the model. The density-dependent function
used in the present study is a negative exponential which
simplifies the model and allows the effects of incorporat-
ing density dependence at the two different life-history
stages to be easily compared.

A major limitation of population models is that they
are usually developed from data sets in unmanipulate_d
field conditions. An advantage of the present data set 15



that it is drawn from a factorial field experiment in which
the effect of sheep grazing treatments can be included via
effects on the model parameters. Here we examine the
relationship between sheep grazing at different times of
year and the population dynamics of Cirsium vulgare as
predicted by the two versions of the density-dependent
model. Some of the data used in the present study have
already been used to describe the density-independent
dynamics of Cirsium vulgare under different grazing
treatments (Bullock et al. 1994a). The experimental de-
sign allows us to make predictions of the fate of Cirsium
vuigare populations under a variety of different manage-
ment conditions, which in turn reflect a range of semi-
natural habitats.

Methods

Field experiment

The sheep grazing experiment was set up at Little Wittenham
Nature Reserve in Oxfordshire, England (US 5681 9247) in 1986
(Treweek 1990). The grassland is species-poor and is dominated by
Lolium perenne and Agrostis stolonifera (Bullock et al. 1994b). The
experiment is fully factorial (2 summer grazing levels x 2 winter
grazing levels x 2 spring grazing levels) with two randomized
blecks (Table 1). Each treatment replicate is applied toa 50 x 50 m
paddock. Winter grazing runs from 1 November to 21 March,
spring grazing from 21 March to 2} May and summer grazing from
21 May to 1 November. In winter and spring seasons grazing levels
are either ungrazed or grazed by two Suffolk x Mule ewes per
paddock. In summer two grazing levels are applied by adjusting the
stocking rate to produce either a 3 cm or 9 cm sward height (mea-
sured weekly).

Life-history of Cirsium vulgare

From 1987 to 1992 the abundance and size-distribution of C. vul-
gare rosettes in cach paddock were monitored in the second week
of April. Survival of various life-history stages and fecundity was
also determined in each paddock. Details of these measurements
and the plant’s life-history are given in Bullock et al. (1994a), a
summary of which is provided below and in Fig. 1.

C. vulgare is a monocarpic perennial with size-dependent sur-
vival and flowering rates. Seedling emergence occurred in early
spring (January-April) and was gap-dependent. Three rosette size-
classes were recognised : small rosettes (< 10 cm diameter) which die
or become medium {10-20 cm) or large rosettes (=20 ¢m) by the
next year. Medium rosettes were over 1 year old at the census point
and died, stayed as medium rosettes or became large rosettes by the
next year. Neither small nor medium rosettes flowered in the same
year. Large rosettes could flower morocarpically in the same year

Table 1. Design of the grazing experiment

Summer 3 cm Summer 9 cm

Treatment” Winter Spring  Treatment Winter  Spring
A - - E - -
B -~ + F - +
C + - G + -
D + + H + +

A minus sign indicates no grazing during the relevant period. All
paddocks were grazed in summer to either 3 cm or 9 cm in height
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Fig. 1. The life-cycle of Cirsium vulgare. p;, p, and p, refer to the
probability of survival of seed before the germination period, seed
after the germination period and seedlings to small rosettes respec-
tively; g indicates the fraction of seeds germinating and g, — g5 refer
to the transition probabilities between stages
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or die without flowering or remain as large rosettes into the next
year. No rosettes regressed to smaller size-classes.

In addition to a size threshold for flowering the proportion of
rosettes flowering and the number of flowerheads per plant in-
creased with rosette diameter above the threshold. Seeds were eaten
by the larva of the tortricid moth Eucosma cana and the percentage

. of seedheads attacked increased with flowering plant size. Post-dis-

persal survival of seeds in the soil up to germination and year-to-
year survival in the seedbank were measured.,

Model construction

Two versions of a stage-structured model were used, varying in the
life-history stage at which density-dependence was incorporated
(and therefore varying in the assumed underlying mechanism}. The
model symbols are summarized in Appenrdix 1 and related to the
life-cycle in Fig. 1.

The model can be divided into two components:

Seed production, germination and seedling survival. Immediately
after seed-set the number of new viable seeds in year f (V) was given
by the number of large rosettes in that year (L), the fraction
flowering (/) and the average viable seed production of those plants

(s):
No=[sL )]

The viable new seed was assumed to enter a seed bank with surviv-
ing ungerminated seed (U) from the previous year. No distinction
was made in the model between old seed which had survived for 1
year or more and new seed. The seed in the bank had three fates
over the next year — either to germinate or to stay in the seed bank
or to die. Any ungerminated seed which remained in the seed bank

.
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was assumed to have a certain probability of survival through the
year (p,):

Uir = (1-8) py (N+U) @

The probability of survival, p,, was composed of seed survival prior
to germination (p,) and seed survival following the germination
period (p,). It was assumed that all the seed in the bank was near
the surface so that gaps in the vegetation were experienced in a
similar way by new and old seed.

The fraction of seed germinating in year t (g) was mainly
determined by the proportion of bare ground which was known to
be dependent on grazing (Silvertown and Smith 1989; Bullock et al.
1994a). In version 1 of the model it was assumed that g was also
a function of the number of all C. vulgare rosettes; thus a density-
dependent mechanism was assumed, operating with intensity a, in
which rosettes were envisaged to exponentially reduce the fraction
of ground available for germination, and therefore the fraction of
seeds able to germinate, from a maximum of m:

g = mexp[—a(S,+ M+ L] 3

For simplicity, rosettes of all size-classes were assumed to reduce m
equally (Eq. 3). The number of small rosettes (S following seed-set
depended on the probability of seed surviving prior to germination
(p,), the fraction of seed germinating (g) and the probability of
seedling survival from germination to small rosettes (P,):

Sier = @ Pz s (N HU) 0]

In version 2 of the model, g was assumed to be equal to m and
density-dependent mortality was assumed to occur amongst seed-
lings. Therefore p3 was now reduced from a maximum value, pg,,.
by the number of germinated seed:

P3 = Pou eXpl—am (N + U] &)
Note that py = pn., in version 1 of the model.

Survival of roseties. Medium rosettes in year r+1 (M,4,} were
derived from medium rosettes in year 1, with a transition probability
of g1, and from small rosettes in year 1, with a transition probability
of g,:

M = (g S)+(gy M) 6

Large rosettes in year 1+ 1 were derived from small, medium and
nonflowering large rosettes in year f with transition probabilities of
41, g4 and g, respectively:

Ly = (9250 +(qaM) + (qsLD) M

Detection of density dependence

Linear regression methods were employed for detecting and deter-
mining the values of the density-dependent parameters. These were
modifications of the standard Ricker equation regression [In (N, 4,/
N) against N} in which the degree of density dependence was given
by the gradient of the regression (Turchin §990). For version 1 of
the model, estimation of a (Eq. 3) required a regression of In(5, ;. ,/
L) against all rosettes (R, Appendix 2), whilst for version 2 the
intensity of density dependence, a (Eq. 5), was estimated from the
slope of the regression of In(S, . ,/L,) against L,. {Although it should
be noted for version 2 that the slope of the regression is equal to
a m f s — see Appendix 2).

Results

Detection of density dependence and estimation of
parameter values

Estimates of the parameter values for both versions of
the model are given in Appendix 3 based on field data

ZIOTmMgoOwy

Table 2. Values of & across the eight treatments (A-H see Table 1)
in two blocks, based on simulation over 50 generations with no

“density dependence (@=0)

Treatment
A B C D E F G H

Block I
Block 2

0.601 0.917 1.587 2.606 0 0.610 1.449 2432
1.340 1.476 1.245 2.475 0.769 0.959 1.517 2.338

Table 3. Magnitude of slope of regression of In(S,.,/L,) against R,
(a, version 1) and In(S, . /L)) against L, (am/s, version 2) for all
treatments except E

Model version 1

Treatment a r? P (6 df)

A 0.0742 0.09 NS

B 0.0075 0.25 NS

C 0.0277 0.52 <0.05

D 0.0097 0.39 <0.1

F 0.0156 0.21 NS

G 0.0346 0.58 <0.05

H 0.0187 0.34 NS (0.13)

Model version 2

Treatment amfs r? P

‘ 0.1667 0.15 NS

0.0073 0.18 NS
0.0169 0.18 NS
0.0038 0.03 NS
0.1667 0.15 NS
0.0258 0.21 NS
0.0068 0.03 NS

Treatment replicates were combined to give a sample size of 8 (the
number of large roseties was not recorded in the first year). All
slopes were negative except for version 2, treatment G

NS, P>0.1

The data are shown in Fig. 2 for version ] treatments C, D, G and H

reported in Bullock et al. (1994a). These values were
initially used in a density-independent simulation (a=0)
of the model to generate values for the finite rate of
increase (A, Table 2).

In order to examine the effects of grazing treatment
on the regression-¢stimated values of a4, the two treat-
ment blocks were combined (Table 3) giving eight com-
parisons of In(S,, /L) against R, (four from each treat-
ment replicate ; the proportion of large rosettes was not
recorded in the first year). Treatment E was omitted from
the analysis because in 6 of the 12 censuses there were no
plants present.

For verston 1 treatments C and G provided the best
evidence for density-dependence (both values of a signifi-
cantly greater than 0, P<0.05, Table 3, Fig. 2) with
treatment D marginally non-significant (P <0.1). In con-
trast, none of the In(S,, /L) against L, regressions (ver-
sion 2 of the model) were significant.
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Treatment D
r®= 0.39, p < 0.10
a

. . 4 .
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Ry
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22034, p =0.13

Fig. 2. Linear regressions of In
(S, + /L)) against R, for treat-
ments C, D, G and H in block ]
and 2 of the experiment {Table 1).
The r? values and significance
level (6 df) are given for each
regression. The full set of relevant
regression data is given in Table 3
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Fig. 3. The population dynamics of Cirsium vulgare under different
grazing conditions. The dynamics of small rosettes (<10 cm) and
fiowering plants are depicted for treatments C and D in Block 1. The
simulations began with 10 rosettes in each of the three size-classes.
The values at equilibrium are given in Table 4

Range of possible dynamics with field-estimated density
dependence

The exploration of biologically possible dynamics fo-
cused on treatments C, D, G and H as these were shown

Table 4. The predicted number of new seed (N), ungerminated seed
(1), small and medium rosettes (S, M) and flowering plants (F) at
equilibrium under density-dependent conditions (version 1 of
model, density-dependent parameter values given in Table 3)

Treatment

C D, D, G H, H,
Block 1
N 3477 53714 55945 5539 21452 20569
U 60.2 1044 1062 101.8 397 401
s 27.2 60.9 239.6 17.84 37.2 110.1
M 8.73 66.1 30.5 573 309 16.4
F 8.52 46.4 445 5.34 234 225
Block 2
N 1749 50868 52346 1885 15867 15847
U 30.1 982 990 336 303 303
S 13.4 80.6 197 19.9 65.1 67.6
M 4.30 56.1 33.0 6.37 21.6 21.1
F 3.04 42,5 413 6.18 20.0 20.0

D,, D, and H,, H, reler to the two points in the limit cycle in these
treatments
Examples of the dynamics are given in Fig. 3

to have values of a significantly different from 0 (or close
to significance — the regression for treatment H gave
P=0.13 but was included for comparison}. Results of
simulations with version 1 of the model under density-
dependent conditions, employing the parameter values in
Appendix 3 (and therefore the a values in Table 2), are
given in Table 4 and Fig. 3.

For version 1, treatments D and H produced two-

_ point limit cycles for each replicate (Table 4, Fig. 3),

which were most pronounced at the small and medium
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rosette stages. For example, the small rosettes fluctuated
almost four-fold in numbers in treatment D, block 1,
compared with virtually no change amongst the large
rosettes (Fig. 3). The other two treatment conditions
(C and G) resulted in a stable equilibrium in both blocks.

Exploration of the parameter space of a and A for
version | revealed that only A had an effect on the dy-
namics. Two-point limit cycles occurred above a value of
approximately A =2.05 up to the observed maximum of
A=2.6 (in fact, two-point cycles still occurred at A=3.0)
over the whole range of estimated a values (0.007-0.035,
Table 3). Although none of the regressions were signifi-
cant for version 2, a similar exploration of the parameter
space was undertaken. This again revealed a strong de-
pendence on A and, in contrast to version ! of the model,
a much larger stable equilibrium region, which went well
beyond the maximum observed value of A=2.6 (it was
still stable at A=3.0).

Comparison of model stage-class distribution and
equilibrium with observed field values

It was only possible to make a comparison using version
1 of the'model as none of the density-dependent parame-
ter estimates were significant for version 2. There was a
significant positive relationship (r* =0.81, P<0.001) be-
tween the observed mean rosette numbers (per treatment

Table 5. Comparison of the observed mean number of all rosettes
(per treatment replicate) with the equilibrium number from version
i of the model

Treatment Block 1 Block 2
Observed  Model Observed  Model

A 8.5 0 - -

B 7.0 0 167 156

C 99.2 57.2 70.7 48.1
D 240 345 259 318

E _ - - -

F 337 0 27.7 0

G 26.5 420 42.8 42.6
H 38.0 157 62.5 155

For treatments D and H the model value was the mean of the
two-point limit cycle equilibria

3 of the 16 comparisons were ignored (the two E values as before
and A, Block 2, because it had two 0 values)

replicate) and the predicted equilibrium values from ver-
sion 1 of the model (Table 5). In all cases the model
predicted a higher proportion of large (=10 cm) than
small rosettes (Table 6). Although only two out of eight
field observations supported this trend, five of the eight
comparisons between predicted and observed were not
significantly different from each other. Treatments 1D,
2C and 2D all showed significant differences (G=22.4,
4.86 and 23.5 respectively, 1 4).

Discussion

The use of stage-structure in population models, com-
bined with density dependence, leads to important results
concerning the stability of the field populations
whose dynamics we attempt to understand (Gucken-
heimer et al. 1976; de Kroon et al. 1987). To illustrate the
effect of population structure consider the simple Ricker
model of N,,, =AN,exp(—aN,) in which it can be shown
that two-point limit cycles begin at In(A) = 2.0 or A =
7.39. If such a model were to be used for the Cirsium
vulgare populations (e.g. with N giving the number of all
rosettes), the predicted dynamics, given the field esti-
mated values of A (Table 2), would all be well within the
stable equilibrium region. In contrast, version 1 of the
presgnt model, with its inherent time-lags, reduced the
critical value of A at which two-point cycles began to
about 2.05, resulting in populations in two of the grazing
treatments (D and H) falling within the two-point limit
cycle parameter space. This result is important in the
context of previous debate concerning the likelihood of
plant populations showing limit cycles or chaotic dynam-
jcs (Watkinson 1980; Pacala 1986; Symonides et al.
1986; Silvertown 1991; Rees and Crawley 1991). Unlike
the present study, these authors focused on annual plants
for which the Ricker model would be appropriate. In this
debate the role of self-thinning and seed dormancy has
been considered, revealing that both can reduce the likeli-
hood of limit cycles and chaos (Watkinson 1980; Pacala
1986; Thrall et al. 1989). In the present modei there was
no explicit description of self-thinning and seed dor-
mancy was included in a very simplified form (Eq. 2). The
mode] output suggests that seced dormancy is relatively
unimportant in Cirsium vulgare dynamics (Table 4) and
an elasticity analysis by Bullock et al. (1994a) showed
that seed dormancy had little effect on A in these popula-

Table 6. Comparison of observed (obs) and predicted (pred) numbers of different sized rosetles in treatments C, D, G and H in experimental

blocks 1 and 2

C pred C obs D pred D obs G pred G obs H pred H obs
Block 1
<10 cm 27.2 64.4 150 163 17.8 16.4 737 113
210 cm 30.0 514 195 96.4 242 14.0 84.1 92
Biock 2 )
<10 cm 134 342 139 179 19.9 222 66.4 139
210 cm 347 374 180 104 226 21.0 88.1 152

Two size-classes were compared (<10 cm, S and =10 cm, M and L)



tions, However, a definitive statement on the role of
dormancy can only be given when a more realistic
algorithm for ungerminated seed has been developed.

The treatments which resulted in a prediction of un-
stable dynamics (D and H) were those which were grazed
in both spring and winter (Table 1) and in which the
sward was expected to be most open. Under these treat-
ment conditions A was at its highest, primarily due to the
increased probability of seedling survival (p;). In fact, p,
served as a good predictor of A (A=0.431+3.301p,,
r?=(),783). For two-point cycles the greatest likelihood
of detection came not from large rosettes but from the
small and medium rosettes (Table 4, Fig. 3). This showed
that it is important to examine all stages of the life-
history of the plant to maximize the chance of discover-
ing unstable dynamics.

De Kroon et al. (1987) undertook similar analyses for
model populations of Hypochaeris radicata. In their
study, mowing was the management regime and density
dependence was incorporated at both germination and
seedling establishment, which were in turn functions of
gaps in the vegetation. The density dependence in the
present study has only been incorporated at one point in
the life-cycle at a time (unlike de Kroon et al. 1987 and
Law’s model in Watkinson 1987) in order to compare the
effects on population behaviour.

An alternative method of incorporating density de-
pendence during germination would have been to use a
safe-site model (e.g. Klinkhamer and de Jong 1989; Silver
town and Smith 1989). Such models assume a particular
distribution of seed amongst a certain number of safe
sites in which germination is guaranteed for a small
number of the seeds in a safe site. Version 1 of the present
model was clearly similar to a safe-site model and might
be mechanistically described in such terms. A quan-
titative comparison with the earlier Cirsium vulgare
model of Silvertown and Smith (1989) is impeded by the
difficulty of determining the density and size of safe sites
(gaps for germination) in the field. Therefore one either
makes assumptions about the minimum size of gaps for
germination, the density of those gaps and the distribu-
tion of seed, or they are experimentally determined in the
field. This then allows a conversion from minimum gap
size and gap density to fraction of space available for
germination and fraction of seeds germinating, i.e. pa-
rameters m and g in the present model.

The fact that only version 1 of the model produced
significant estimates of density dependence might lead
one to believe that version I encapsulates a more appro-
priate model of density dependence compared to ver-
sion 2. However, it is possible that the particular regres-
sion used for version 1 could also be appropriate to an
entirely different density-dependent mechanism and one
should be cautions about the link between the signifi-
cance of the regression and the assumed mechanism in
the field.

Although none of the density-dependent regressions
were significant for version 2, exploration of the parame-
ter space of A and o was justified in that & was the
determinant of the switch from a stable equilibrium to
other types of dynamics (a or a contributes to the equilib-
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rium value). Thus, in order to compare versions 1 and 2
of the model, one only has to assume existence of density-
dependence in version 2 (however small the values of a
or a). This comparison revealed the relative stability of
version 2 of the model. This is perhaps surprising when
one considers the similarity of the two versions. Manip-

-ulation of the equations (ignoring the relatively small

component of U, compared with N,, Table 4) reveals the
primary difference in the two versions:

Si+1/F. = yexp (—a R) version |
S+ 1/Fe = y exp (— b N) version 2

where y = mpy pe.sand b = am

In version 1 the number of small rosettes in year 7+ 1
produced per flowering plant in year ¢ was reduced by all
rosettes in year ; whilst in version 2 the equivalent per
capita production of small rosettes in year t+1 was
reduced by the number of new seeds in year t. Thus, only
the large rosettes in year ¢ contributed to the density
dependence (by a certain fraction flowering and produc-
ing seed) in version 2, whereas all rosette stages contri-
buted to the density dependence in version 1. So, for
these two model versions, density-dependence effects
from the larger number of stages was more destabilizing.
From these results it is clear that a thorough study of the
way in which stage structuring can interact with assumed
types of density dependence is required, and, linked to
that, an assessment undertaken in the field of the exis-
tence and intensity of these assumed density-dependent
responses.

There are two related applications of the models
presented in this paper. First, they can be used to predict
the relative levels of C. vulgare infestation in fields under
different grazing management treatments. Second, they
can be used to predict population dynamics in any one
field, given a certain management regime. It is difficult
(and probably not sensible) to test the efficacy of the
latter in the present case because of the short time-series,
However, it has been possible to consider the relationship
between observed mean population size (per treatment)
and predicted equilibrium population size. In making
this comparison it should be noted that all the early stage
parameter values used to quantify the model (Appen-
dix 3, Table 2) were based on data independent of the ob-
served rosette numbers. The population equilibria in
version 1 of the model explained over 80% of the be-
tween-treatment variation in mean observed numbers of
C. vulgare. The ratios of small to large rosettes predicted
by the model were less satisfactory than the predictions
of total rosette density. In three out of eight cases the
predicted ratio of small:large rosettes was significantly
different from that observed in the field. The greatest
departure from prediction came in the hardest grazed
plots (1D and 2D, Table 6), where the model predicted
a higher proportion of large rosettes whilst the observed
pattern was one of a higher proportion of small rosettes.
These were also the only two cases where the observed
ratio of small:large rosettes was significantly different
from 1:1. In other words, the values of large rosette
survival were too high. The most obvious explanation of
this are direct effects of grazing which were not incor-
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porated into the treatment parameter values. Thus this
apparent failing of the model can be turned into a virtue
by identifying an area of model parameterization where
more fieldwork may be required.
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Appendix 1. Summary of the symbols and abbreviations used in the
two versions of the model

Stage variables

N new viable seed

U ungerminated seed

hY small rosettes

M medium rosettes

L large rosettes

F fiowering plants

R all rosettes

Fecundity and mortality parameters

s’ average viable seed production per plant

P probability of survival of ungerminated seed

throughout year (p,. P2)
P2 ‘ probability of seed surviving before germination
M + probability of seed survival after germination period
P probability of seedling survival from germination to
small rosettes (P, — maximum value of py)

Transition probabilities

4 small to medium rosetics
4z small to large rosettes

q3 medium to medium roseties
qa medium 1o large rosettes
qs large 10 large rosettes

Other parameters

aa intensity of density-dependence (versions | & 2)
A finite rate of population increase

f fraction of large rosettes flowering

m maximum fraction of seeds able to germinate

g actua! fraction of seeds germinating

Appendix 2 i. Derivation of regression of In(S,,,/L) against all
rosettes (R, for estimation of intensity of density dependence in
version 1 of model

g,=m exp(—aR) ®
Substitute for g, in Eq. 4:
S,+1=m exp(—aR)p, p3 (N,+ 20 (4a)

Given U, is very low compared with N, (Table 4) U, is ignored and
m, p, and p; combined as p,:

S,41=ps exp{—aR)N, (5a)
Substitute for N, in 5a from Eq. 1:

S,4+1=ps exp{—aR) f5L, (6a)
Combine p,, fand 5 as py, divide by L, and take logarithms:
In(S, , /L)=In(ps)—aRt (7a)

ii. Derivation of regression of In(S,, /L) against L, for version 2
From Eqs. 3 and 5

a=m and P3=Pmnx CXP[—QM(N'-F Ul)]

Ignoring U, and substituting Eq. 5 into 4:

Sl+l=mpl Pm.xeXp(;U.MNJ N! (8&)
Substitute RHS of Eq. 1 for N;:
8,41 =M P3 Prax eXp(—amfsLy) fsL, ' (%a)

Combine 1, Py, Prap £ 20d 5 (pg), divide by L, and take logarithms:
In(S, /L) =In{pe)—amfsL, - (10a)

Appendix 3. Field parameter estimates from different grazing ireat-
ments (A-H, listed in Table 1), following Bullock et al. (1993a).
Explanation of the parameter abbraviations (s, m, ps. §:~¢s and f)
are given in Appendix 1. Blocks 1 and 2 refer to the two blocks in
the grazing experiment. p, and p, were found to be unaffected by
the treatments and taken as constants (p, =p, x p,=0.24 ¥ 0.08)

Block T

1A 1B IC ID 1E IF 1G |IH
5 274 2888 408 1207 1193 727 1038 916
m o 0113 0.131 0.556 0.431 0.063 0.069 0.256 0.488
P 0.167 0.095 0.281 0.594 0.0 0.182 0.220 0.487
q; 0.084 0.084 0246 0.246 0.084 0.084 0.246 0.246
gz 0.056 0.056 0.164 0.164 0.056 0.056 0.164 0.164
93 0.15 015 0234 0234 015 015 0234 0.234
Ga 0.35 035 0546 0.546 0.35 035 0546 0.546

qs 0.473 0.312 0.567 0.652 0.576 0.312 0.671 0:586
I 0.5 067 040 031 039 067 029 038

1 None of the seedlings survived to form small rosettes

Block 2 (values of g,—¢, as for Block 1)

24 2B 2C 22> 2 2F 2G 2H

1231 1190 1360 305 794

5 1672 985 576

m 0375 0.456 0.456 0.469 0.113 0.163 0.381 0.438
Ps 0.217 0343 0.260 0.467 0.111 0,192 0.492 0.700
qs 0.586 0.473 0.851 0.652 0.577 0.709 0.586 0.662
f s 038 050 010 031 039 025 038 030
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