
Appendix to George C. Williams’ problematic model of selection and senescence: time to move on. 

As we explain in our letter, Day & Abrams’ (2020) interpretation of our message is incorrect, and this 

has apparently followed from confusion over terminology. Specifically, we point out that extrinsic 

mortality can be defined in terms of either its direct effects on age-specific mortality (such as the 

proximate effects of an experimental manipulation or the presumed direct action of an ecological 

threat) or the total effects on age-specific mortality and fertility (the actual changes of vital rates that 

are felt by the population). The latter can differ from the former due to ecological feedback, such as 

might be caused by changes in density pressures. For the most part, Day & Abrams build the 

arguments in their Appendix upon the  premise that we adopt the former definition in the first part of 

our paper (Moorad et al. 2019), when in fact we use the latter. Consequently, their Appendix, for the 

most part, argues against a viewpoint that is not ours. This would include their model intended to 

demonstrate that one particular form of density-dependence can cause extrinsic mortality (in the 

direct sense of the word) to change how selection works. Given that our paper acknowledges in the 

section on density dependence that this can happen, the use of this model appears to us to succeed 

in only refuting a straw-man argument. We will say no more about this aspect of their Appendix, which 

makes up its first half, except to note that they refer to this narrative throughout its remainder.  

Aside from this, we agree on most points that Day & Abrams have made regarding how selection is 

changed in response to the addition of extrinsic mortality. We do not share their enthusiasm for the 

techniques of Mylius & Diekmann (1995) because we feel that Hamilton’s approach is sufficient, and 

from our perspective, it is simpler and more intuitive. The former is part of the ESS approach, and as 

such should generate the same predictions as those derived from Hamilton (Charlesworth 1980). 

Accordingly, we don’t take issue with the use of these models per se, but we would object to 

suggestions that density-dependent population regulation somehow makes Hamilton’ formulae 

inappropriate.  

For the most part, the response from Day & Abrams could be chalked up simply to an unfortunate 

misunderstanding of terminology. However, there are comments made in the latter part of their 

Appendix that indicate disagreement and/or confusion on other points, and we feel that these warrant 

further discussion in the remainder of this Appendix.  

Density-dependent regulation cannot, by itself, cause changes in selection 

Day & Abrams correctly attribute the statement in the header to us, and we stand by it, but we note 

that some context is required to understand it properly. This is written in response to those who would 

invoke density-dependence by itself as a reason for why Williams’ prediction appears to hold true in 

a particular situation. However, it is important to note that density-dependence with the addition of 

extrinsic mortality can lead to selection for late-life survival to be strengthened, relaxed, or 

unchanged, depending upon the ecological specifics (see Abrams (1993) or examples of each in Figure 

1 of our response). Day & Abrams’ model provides an example of a situation in which one sort of 

density-dependent regulation does change selection to favour more senescence when (direct) 

extrinsic mortality is added. We do not dispute that this is what they have demonstrated, and we 

recognize that this sort of ecological scenario might be widespread and important (but we believe that 

we lack sufficient information to know for sure). However, different density functions can lead to the 

opposite prediction (selection favours less senescence). More to the point, one can even imagine 

forms of density dependence in which there is no change in selection. To see how this might work, let 

us review Hamilton’s formula for selection 𝛽(𝑥) for mortality at some age x,  

 𝛽(𝑥) = −
∑ 𝑙𝑦𝑚𝑦𝑒

−𝑟𝑦∞
𝑦=𝑥+1

∑ 𝑦𝑙𝑦𝑚𝑦𝑒
−𝑟𝑦∞

𝑦=1
  [1] 



Note that this is negative because it describes selection for a deleterious character (death). We 

imagine some change that reduces cumulative survival as a direct response to the environmental 

perturbation, but because population growth is density dependent, we do not allow r to change. If we 

chose to further constrain the model, we could specify that r is fixed to 0, and this would make the 

model equivalent to the condition usually imagined in the theory (e.g., Day & Abrams’ model), but 

that is not necessary. Because survival is suppressed, fertility must be enhanced in order to satisfy the 

condition that r is unchanged. Adding extrinsic mortality (in the direct sense of the term) must 

decrease 𝑙𝑦, increase 𝑚𝑦, and leave 𝑒−𝑟𝑦 unaltered for all ages y. If we wish to adopt the usual 

simplifying assumption made by Day & Abrams and others that density supresses fertility by the same 

fraction at every age, then we would find that the fractional increase in 𝑚𝑦 is age-independent but 

the fractional decrease in 𝑙𝑦 is age-dependent. The product of these decreases with age faster after 

the perturbation than before, and this leads to a reduction of selection against late-life mortality.  

However, let us replace one assumption with a biologically feasible assumption that the fertility of 

older individuals is more sensitive to density effects than that of younger individuals. Adding extrinsic 

mortality will decrease 𝑙𝑦 in this case, but the loss of selection will be mitigated because the increase 

in 𝑚𝑦 that is caused by the added mortality increases with age. With sufficient density-suppression of 

late life fertility, it is possible that late-life 𝑚𝑦 increases to a sufficient degree to compensate exactly 

for the reduction in 𝑙𝑦; the total effects of extrinsic mortality on vital rates cancel out as 𝑙𝑦𝑚𝑦 remains 

unchanged. Selection would not change in this case, even in the presence of density-dependent 

population regulation. Abrams (1993) mentions another scenario (survivorship is equally affected by 

density at all ages) that leads to no change in selection because the direct and indirect effects exactly 

cancel.   

On the relationship between age-distributions and selection 

Day & Abrams correctly attribute the following quote to us, “It has long been known that the addition 

of age-independent mortality can have, by definition, no effect on age-distributions. It follows that 

mortality that is truly independent of condition will not affect within- or among-age distributions of 

phenotypes.” From this, they make two claims. The first is that our statement is incorrect, citing results 

from their model. We have already established that one’s definition of age-independent mortality is 

important, and the definition of the term taken from the perspective of total effects makes our 

statement true (this corresponds to the “density-independent” condition as it is usually imagined). 

Their second claim is that it is irrelevant because a change in the age-distribution is neither necessary 

nor sufficient for a change in selection. This claim has some merit, because in the general case one 

can have changes in selection without changes in age structure. However, in the specific case of 

extrinsic mortality with density dependence that Day & Abrams envision, we might ask if such a change 

is both a necessary and sufficient condition for altered selection. 

To explain, let us first note that there are two age-distributions that are relevant (in the simple asexual 

context) to this conversation. First, there is the distribution of ages of extant individuals,  

 𝑃(𝑥) =
𝑙𝑥𝑒

−𝑟𝑥

∑ 𝑙𝑦𝑒
−𝑟𝑦∞

𝑦=1
  [2]. 

This is what people usually mean by the ‘stable age structure’. However, there is also the distribution 

of ages of new parents, 

 𝑄(𝑥) = 𝑙𝑥𝑚𝑥𝑒
−𝑟𝑥  [3]. 



Note that 𝑄(𝑥) is the relevant element in the summation that Hamilton uses to express the strength 

of selection against mortality (Equation 1). As it is the attenuation of this summation with increased 

age that describes the age-related loss of selection, one cannot change selection without changing 

𝑄(𝑥) (and vice versa). It is well-understood (Coale 1957, Charlesworth 1980, Moorad and Promislow 

2010) that this distribution 𝑄(𝑥) (and therefore the strength of selection) cannot change when the 

total effects of extrinsic mortality are age-independent.  

Put into these terms, Day & Abrams’ comment implies that one can change 𝑄(𝑥) without changing 

𝑃(𝑥); we acknowledge that point. Altering the age-specific fertility rates (say, by reducing early-age 

fertility and enhancing late-late fertility) without changing survival or population growth rates could 

accomplish this. However, since Day & Abrams’ objections appear to focus on the specific case where 

direct extrinsic mortality is applied to populations that are under density-dependent population 

regulation, we might reasonably ask if their objection applies to these conditions. Let us describe how 

𝑃(𝑥) and 𝑄(𝑥) change in this situation. We increase mortality at every age by a factor ∆𝜇 and 

constrain the growth rate to remain the same. Following Day & Abrams’ scenario, we increase fertility 

rates by the same proportion to compensate (we call the fractional increase k). The new distribution 

of new parents is 

 𝑄(𝑥) = (1 + 𝑘)𝑚𝑥𝑒
−𝑥∆𝜇𝑙𝑥𝑒

−𝑟𝑥 [4]. 

Selection will change, and that change must follow from changes in k and 𝑒−𝑥∆𝜇. As there appears to 

be no real debate about whether selection changes in this scenario (it does), we will leave this part of 

the discussion and determine whether these changes imply shifts in the age structure of extant 

individuals. Following the aforementioned logic, the new stable age distribution after the addition of 

extrinsic mortality becomes 

 𝑃(𝑥) =
𝑒−𝑥∆𝜇𝑙𝑥𝑒

−𝑟𝑥

∑ 𝑒−𝑦∆𝜇𝑙𝑦𝑒
−𝑟𝑦∞

𝑦=1
 [5] 

We can illustrate the effect of extrinsic mortality on a two-age class model and restricting r to be 0 (as 

in Day & Abrams’ model). Here, the fraction of the two ages is 

 𝑃(1) =
1

1+𝑝1𝑒
−∆𝜇 [6a] 

 𝑃(2) =
𝑝1𝑒

−∆𝜇

1+𝑝1𝑒
−∆𝜇 [6b], 

where 𝑝1 is the probability of survival from age 1 to age 2 (before the addition of extra mortality). 

Note that because 𝑒−∆𝜇 is maximized at 1 when ∆𝜇 = 0, it is clear that the age distribution is shifted 

ever-more towards the younger age class as more mortality is added. Note that this does not happen 

in the case with extrinsic mortality defines the total effects (i.e., what is usually considered to be the 

result of the density-independent condition). It does not happen in this case, because the reduction 

in 𝑙𝑥 is exactly compensated for by the increase in 𝑒−𝑟𝑥 in Equation 2. It should be clear from a 

comparison of the changes in 𝑄(𝑥) and 𝑃(𝑥) that changes in one cannot occur without changes in the 

other because the shapes of both distributions are changed by the same factor 𝑒−𝑥∆𝜇. We conclude 

that under the conditions explored by Day & Abrams, and despite their claims to the contrary, a 

change in the age distribution is both necessary and sufficient to change age-specific selection against 



mortality. Our conclusion regarding the conditions considered by Day & Abrams is consistent with 

Charlesworth (1980), 

“… demographic changes which leave the age-structure of the reproductive age-classes unchanged 

are unlikely to cause gene-frequency changes, unless they are due to a source of mortality or a factor 

affecting fecundity which is directed specifically at certain genotypes or at a specific group of ages of 

the reproductive individuals.” 

Comments on demographic stability 

All of the derivations and expressions that we present assume that an equilibrium has been met with 

respect to vital rates, age structures, and population growth rates. Nonetheless, Day & Abrams have 

taken a comment that we made criticizing one particular study to indicate that we, “have not 

appreciated an important aspect of the mathematical foundation of all optimization models based 

upon the Euler-Lotka (EL) equation; namely, all mathematical analyses are valid only for the 

asymptotic state of the population … This is simply a mathematical fact and it invalidates all of Moorad 

et al’s arguments having to do with these transient effects [our emphasis added].” Once again, we 

agree with most of what Day & Abrams believe (they do identify an important assumption that most 

models make), except where it deals with what we have said. Their criticism is lacking in detail as to 

where, exactly, these transgressions supposedly occur, but they do cite Box 3. There we had imagined 

that mortality has been added at one arbitrary age, and we have asked the question, “What are the 

consequences of adding mortality at one age to selection for mortality at all age classes?” With respect 

to the issue of demographic stability, this is no different from asking the same questions that have 

been asked (and answered) before, “What are the consequences of adding the same amount of 

mortality at all ages to selection for mortality at all age classes?” Specifically, we make a change to the 

lx schedule that reflects the added mortality, we account for the effects of this change on the 

population growth rate, and then we modify Hamilton’s description of selection to reflect these 

changes. This approach has been applied before (e.g., Charlesworth 1980, Caswell 2007) with no 

remonstrations.  

It is difficult for us to understand the source of Day & Abrams confusion. Perhaps they are unclear 

about the meaning of “change” as it is used in this context. We will clarify our meaning here by 

imagining two equilibrium populations that are identical in all ways except that one has vital rates that 

reflects the added mortality and one that does not. The “change” in selection is the difference in 

selection gradients between the two. It should be obvious that there are no violations of assumptions 

of demographic stability in this case.  

An alternative cause of their confusion could be our criticism of an assertion made by da Silva (2018) 

that r should be assumed to be zero in the general case because that is what the long-term growth 

rate must average out to be. This is incorrect for at least two reasons. The first reason, which we do 

not mention in our paper, is that this perspective does not include ecological feedbacks that might 

work to maintain a population growth rate equal to zero. However, if density is involved in this 

maintenance, then these feedbacks on vital rates need to be considered. We had mentioned a second 

reasons, was that da Silva’s observations implies that population growth should be negative some of 

the time and positive some of the time. We were simply pointing out that a model, such as da Silva’s, 

that assumes that r is always zero may not provide the same predictions as when it varies about zero. 

This is our only foray into a discussion of non-stable populations, and, despite Day & Abrams’ 

assertion, we do not model this condition. We do, however, cite work that does consider this more 

complex situation properly (Caswell 2007, Caswell and Shyu 2017). 



On the relationship between density dependent population regulation and stationary populations 

Day & Abrams’ views of our position on the previous topic appear to be confused with issues relating 

to density-dependence and population growth rates. For example, their criticism of our model in Box 

3 appears to invoke density-dependence, but density-dependence is not part of our model. We 

challenged the common modelling practice of assuming that populations that are under density-

dependent population regulation are stationary (r = 0) on the grounds that populations that grow or 

shrink must also be subject to the same sorts of ecological constraints. Apparently this has led Day & 

Abrams to conclude that this “appears to be part of the justification given in Moorad et al. for their 

belief that there is no difference in predictions between [density independence] and [density 

dependence].” This, of course, is a straw man argument based upon a distortion of our message, as 

we make clear here and in our original paper on p.525.  

Nonetheless, we wish to clarify our position on the latter relationship between density-dependence 

and population growth rates because we think that this is important for understanding the robustness 

of current model predictions. In our paper, we suggested that the strategy of using only stationary 

populations to assess changes in selection with density dependence may have been implemented in 

order to ensure that fitness could be equated with lifetime reproductive success, and that might 

provide for simpler models. In retrospect, that assertion might be a bit harsh as we must acknowledge 

the point that r = 0 with density-dependence presents an ecological scenario that is attractive because 

it ensures that populations do not go extinct or grow to unreasonable size without running afoul of 

assumptions of population stability. However, we maintain our position that generalizing these 

models to accommodate any value for r in a stable population would be a positive development. It 

would be nice to know, for example, that the sort of model proposed by Day & Abrams predicted the 

same results in shrinking, stationary, or growing populations that are under density pressures. One 

way to approach this problem might be to choose an arbitrary r value that must be insensitive to the 

direct effects of a manipulation of vital rates. Because that value for r would be constrained by the 

conditions of the model, ecological feedback of those changes would lead to some particular total 

effect on the vital rates. The change in selection would then follow from selection gradients derived 

from Hamilton’s expressions. This is what we have done above in our discussion of selection with 

density dependence, but if that is objectionable on the grounds that the suppressive effects of density 

don’t realistically work that way, then r could be set to zero, and the same qualitative inferences that 

we make above still apply in this limited case. 

Details of our Figure: All populations have 25 age classes. Fertility is zero throughout the first five (pre-

adult) age classes. Mean fertility over the adult ages is the product of five and the gamma distribution 

with parameters  𝛼 = 2, 𝛽 = 0.2. The shape of this function is illustrated in the center graph of the 

top row. All populations begin with Gompertz mortality, (𝑥) = 𝐴𝑒𝑥𝑝(𝐵𝑥) , with A = B = 0.05. The 

slope parameter, B, was adjusted upwards until the Malthusian growth rate became approximately r 

= 0.05 (B ≅ 0.1872). No ecological relationships are inferred at this point. In each of the cases below, 

an environmental perturbation was imagined that has the sole direct effect of increasing mortality by 

0.1 at every age. The first column illustrates these direct effects, and they are equal across scenarios. 

The graph for the fourth scenario is scaled differently, and that will be explained below. 

Scenario 1 (row A): Added age-independent mortality with density independence. The vital rates 

described above define the initial conditions (before the mortality is added). There are no indirect 

effects because there are no ecological feedbacks. The center graph illustrates age-specific fertility, 

but there is no change. There is no change in selection against mortality (right). This scenario and 

results are consistent with Abrams’ prediction for the density-independent case (Abrams 1993). 



Scenario 2 (row B): Added age-independent mortality with density dependence (through age-

independent fertility). Fertility is suppressed from the previous conditions incrementally and by the 

same fraction until r converges with 0 from above. At this point, approximately 61% of age-specific 

mortality remains. These are the starting conditions. Age-independent mortality is added, and fertility 

is incrementally increased until r converges with 0 from below to reflect the relaxation of density 

pressure. The center graph illustrates the changes in fertility over the starting conditions (the indirect 

effects). Selection against adult mortality is supressed (right). This scenario and results are consistent 

with Abrams’ 2nd enumerated prediction for the density-dependent case (Abrams 1993). 

Scenario 3 (row C): Added age-independent mortality with density dependence (fertility is more 

affected in the old). Fertility is suppressed as described in Scenario 2, except that the incremental 

decline is proportional to the square of the age. Age-independent mortality is added, and fertility is 

incrementally increased (in the same squared-fashion) until r converges with 0 from below to reflect 

the relaxation of density pressure. The center graph illustrates the changes in fertility over the starting 

conditions (the indirect effects). There is a notable shift towards older fertility when compared to 

Scenario 2 (center, row B). Selection against adult mortality is enhanced (right). This scenario and 

results are consistent with Abrams’ 3rd enumerated prediction for the density-dependent case 

(Abrams 1993). 

Scenario 4 (row D): Added age-independent mortality with density dependence (through age-

independent mortality). Mortality was increased by increasing the ‘A’ parameter until r converges with 

0 from above (A ≅ 0.0728). This represented the starting conditions. Age-independent mortality is 

added, and the leftmost graph on the fourth row represents the direct effects of this change. This is 

rescaled to reflect age-specific mortality (rather than cumulative survival), and the initial conditions 

with respect to mortality are slightly different from those in the first three Scenarios. Age-

independence mortality is reduced until r converges with 0 from below to reflect the relaxation of 

density pressure. The center graph illustrates the change in age-specific mortality over the starting 

conditions (the indirect effects). Notice that the direct and indirect effects are equal and opposite. The 

total effects on vital rates are neutral, and the rightmost graph illustrates the obvious lack of change 

resulting for selection. This scenario and results are consistent with Abrams’ 1st enumerated prediction 

for the density-dependent case (Abrams 1993). 
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